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Abstract: The elastoplastic analysis of the surrounding rock of a circular tunnel is a very classic rock and soil mechanics 

problem. Previous scholars usually studied the situation under axisymmetric load, and they usually did not take the 

non-axisymmetric load distribution under the influence of ground stress and lateral pressure into account, which greatly affected 

its application in engineering practice. Approximate analytical solutions for calculating the plastic zone range, stress field and 

displacement field of the surrounding rock of a circular tunnel are inseparable from the consideration of the strength reduction 

and volumetric dilatancy characteristics of the rock material. The elastic-softening-residual plastic triple linear stress-strain 

model and the Mohr-Coulumb failure criterion are involved. The approximate analytical solutions of the residual stress field, 

strain field, displacement field and radius of the plastic zone in the elastic zone, plastic softening zone and surrounding plastic 

zone of the circular tunnel surrounding rock under axisymmetric load are deduced. The analytical solutions are valid only when 

the plastic zone is large and the lateral pressure coefficients 1≤λ<3. The approximate analytical method is close to the calculation 

result of finite element method and can replace the finite element method to carry out simple elastic-plastic analysis of 

surrounding rock. 
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1. Introduction 

The elastoplastic analysis of the surrounding rock of a 

circular tunnel is a classic rock and soil mechanics problem, 

which was put forward by R. Fenner and later corrected by H. 

Kastner. Fenner and Kastner's research is based on an ideal 

elastoplastic medium, and mainly studied the situation under 

axisymmetric load. Many scholars at home and abroad 

subsequently proposed some calculation methods that 

consider the effects of surrounding rock strain softening and 

capacity expansion. For example, Mingjing Jiang proposed 

an analytical solution to the expansion problem of cylindrical 

holes based on the stress drop model and considering the 

dilatancy effect [1]. The approximate solution of the stress 

drop model in Hoek-Brown rock-soil medium was calculated 

by Sharan [2]. Yu considered the improvement of rock 

strength by the intermediate principal stress, and proposed a 

new unified strength theory [3]. Fan calculated the unified 

analytical solution of the surrounding rock of the circular 

cavern based on Yu's unified strength theory and the trilinear 

stress-strain softening model [4]. H. Kastner also gave an 

implicit approximate solution for the plastic zone distribution 

of surrounding rock under non-axisymmetric loads. Yu and 

Zheng revised H. Kastner’s answer [5]. Sun introduced an 

approximate solution for the plastic zone distribution under 

non-axisymmetric loads [6]. Cai gave an analytical solution 

that takes the distribution of plastic zone in the loosening 

zone of the surrounding rock into account [7]. Park proposed 

the analytical solutions for the prediction of displacements 
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around a circular opening in an elastic–brittle–plastic rock 

mass compatible with a linear Mohr–Coulomb or a nonlinear 

Hoek–Brown yield criterion [8]. Kargar proposed an 

analytical solution for isotropic, homogeneous, and 

visco-elastoplastic constitutive model of the surrounding rock 

of a circular tunnel under hydrostatic stress field [9]. Wang 

proposed the theoretical solution of stresses and 

displacements around a circular tunnel in Mohr Coulomb 

(M-C) rock mass considering axial in-situ stress, which can 

be used to calculate the case where the axial stress is not an 

intermediate stress [10]. Zhou proposed the elastic-plastic 

analytical solutions of elastic-plastic stress, strain and plastic 

zone of circular tunnel under different axial in-situ stresses 

based on the nonlinear Hoek Brown failure criterion [11]. 

Carranza described the relationship between the Hoek Brown 

parameter of rock mass strength and the mechanical response 

of underground caverns, and proposed a formula for 

describing the elastic-plastic behavior of rock by Hoek 

Brown criterion [12]. Jimenez proposed a new estimation 

method for equivalent Mohr Coulomb strength parameter, 

which can be used in the design of supporting tunnels in 

elastic-plastic rock masses satisfying the nonlinear empirical 

Hoek Brown failure criterion [13]. Sharan proposed a 

closed-form solution to calculate the displacement around a 

circular hole in brittle rock mass under hydrostatic stress 

field, which was found to be in an excellent agreement with 

that obtained by using the finite element method [14]. The 

elastic-plastic analytical methods of surrounding rock of 

circular tunnel are given based on different methods in the 

above-mentioned literatures. However, the coefficient of 

in-situ stress and lateral pressure of surrounding rock of 

circular tunnel has great influence on its plastic zone, stress 

field and displacement field. However, most of the existing 

analytical methods for elastic-plastic analysis of surrounding 

rock of circular tunnel are based on axisymmetric load 

distribution, the non axisymmetric load distribution under the 

influence of in-situ stress and lateral pressure is not well 

considered, which affects its application in engineering 

practice. Lu found an analytical solution to determine the 

plastic zone near a circular tunnel under non-axisymmetric 

stress based on the conformal transformation method of 

complex variable functions, but did not consider the strain 

softening phenomenon when the rock mass yielded [15]. 

Taking into account the influence of the lateral pressure 

coefficient of the in-situ stress on the plastic zone, stress field 

and displacement field of the surrounding rock, based on the 

trilinear stress-strain softening model, the Mohr-Coulomb 

yield criterion is used to derive approximate analytical 

solutions of the surrounding rock of a circular tunnel’s stress 

field, strain field, displacement field and radius of plastic 

zone under non-axisymmetric load in this paper. 

The remainder of this paper is organized as follows. In 

Section 2, the applicable rock mass constitutive model and 

yield criterion are determined, and the force model of the 

circular chamber is analyzed. In Section 3, the solution 

function of stress and displacement of surrounding rock in 

elastic zone under non-axisymmetric load is given. In Section 

4, the solution function of stress and displacement of 

surrounding rock in plastic zone is given, and the extent of 

the plastic zone is calculated. In Section 5, through a 

calculation example, the analytical solution and the finite 

element calculation result are compared and verified, which 

shows the feasibility and accuracy of the method in this paper. 

Finally, conclusions are given in Section 6. 

2. Elastoplastic Analysis Mechanical 

Model of Circular Tunnel 

2.1. Constitutive Model of Rock Mass and Yield Criterion 

Rock mechanics experiments show that the bearing 

capacity of most rock materials will decrease to some extent 

when the load reaches the limit value. At the same time, the 

volume of yield rock materials will generally increase with 

the increase of strain, that is, the strain softening and 

dilatancy effect of rock materials. Theoretical analysis and 

engineering practice show that the strain softening and 

dilatancy characteristics of geotechnical materials have a 

significant impact on the mechanical properties of 

surrounding rock. The mechanism of strain softening and 

dilatancy of geotechnical materials is very complex, 

Therefore, it is necessary to simplify the elastic-plastic 

analysis of circular cavern. The stress-strain relationship and 

the curves of ε1 - ε3 used in this paper are shown in Figure 1 

and Figure 2 (η1 and η2 are expansion gradients, 

dimensionless). 

 
Figure 1. Simplified stress—strain curve. 

 
Figure 2. Simplified ε1—ε3 curve. 

Many different yield criteria for rock materials have been 

proposed by many scholars at home and abroad in the context 

of the rapid development of rock mechanics, such as Mohr 
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Coulomb criterion, Drucker Prager criterion, Griffith 

criterion, Hoek Brown criterion and twin shear strength 

criterion. Among them, Mohr Coulomb criterion can reflect 

the strength characteristics of geotechnical materials very 

well, and because its linear characteristics make the process 

and formula of analytical calculation more concise, it is used 

more widely. The Mohr Coulomb criterion can be rewritten 

as follows in polar coordinates: 

1 sin
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In this formula, ,  are the surrounding rock’s shear 

stress and radial stress, they correspond approximately to the 

maximum and minimum principal stresses; φ is the friction 

angle of the rock; C is the cohesion. 

2.2. Mechanical Model of Circular Cavern 

When the strain softening effect of rock mass is considered, 

there are multiple yield surfaces in the yield process. 

Therefore, when the load of surrounding rock reaches a 

certain state, the surrounding rock of tunnel can be divided 

into three zones from the inside to the outside, namely plastic 

residual zone, plastic softening zone and elastic zone, as 

shown in Figure 3. For the convenience of calculation, the 

smaller initial geostress is P, the larger is λP, that is, the 

lateral pressure coefficient is λ≥1, and the polar axis direction 

of polar coordinate system is consistent with the direction of 

smaller in-situ stress. The uniform support pressure of the 

inner wall of the tunnel is iP . When λ>3, tensile stress zone 

will appear in the surrounding rock, so the value range of 

lateral pressure coefficient is 1≤λ<3. 

 
Figure 3. Mechanics model of circular tunnel. 

3. Analysis of Stress and Displacement in 

Elastic Zone 

3.1. Solution of Stress Function in Elastic Zone 

Under non-axisymmetric load, many scholars' analytical 

calculations of the stress in the elastic zone are derived from 

the Lame solution, which is one of the main reasons for the 

error of the calculation results. In this paper, an appropriate 

stress function is found through trial algorithms, and a 

relatively accurate stress calculation formula in the elastic 

zone is obtained. The general formula of the stress function 

can be expressed as: 
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where C1~C8 are undetermined real constants, and the stress 

function naturally satisfies the coordination equation in the 

polar coordinate system. When physical strength is not taken 

into account, the stress component of the elastic zone 

represented by the stress function can be expressed as: 
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At the elastoplastic interface, the rock mass obeys the 

Mohr-Coulumb yield criterion, and when 1≤λ ＜ 3, the 

tangential and radial stresses have the following relationship: 

2 ( 1) cos 2e re P Pθσ σ λ θ+ = + −        (4) 

Combining (1) and (4), the stress boundary conditions on 

the elastoplastic interface are 
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It is known that the stress boundary condition at infinity of 

the surrounding rock is: 

θσ rσ
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Combining the above formulas, the general solution of the 

stress function C1~C8 can be obtained, and the stress analysis 

formula of the elastic zone in the surrounding rock from the 

stress function is: 
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3.2. Elastic Zone Displacement Solution 

Under non-axisymmetric load, the relationship between 

the displacement and stress of the elastic zone is, 
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Bring the calculated stresses into the above equations, 

using the radial and tangential displacements at infinity 

( | 0e ru →∞ = ， | 0e rv →∞ = ), and the boundary conditions of 

the tangential displacements at the coordinate axis (θ=0, π/2, 

π, 3π/2), the radial displacement of the elastic zone can be 

solved as: 
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4. Analysis of Displacement, Stress and 

Range of Plastic Zone 

4.1. Solution of Displacement Field in Plastic Zone 

Considering the dilatancy effect at the yield of the 

surrounding rock and assuming that the dilatancy gradient is 

constant, according to the plastic flow law, the radial and 

tangential strain of the rock in the plastic softening zone have 

the following relations: 

1 0p rpθη ε ε+ =                 (18) 

where η1 is the dilatancy gradient of surrounding rock in the 

plastic softening zone, η1≥1, when there is no dilatancy effect, 

η1=1. η1 is obtained by the stress-strain test of the rock. As the 

diffuser gradient is greatly affected by the confining pressure, 

the average value of the maximum and minimum diffuser 

gradients can be taken. 

Assuming that the strain in the plastic region is 

axisymmetric, the above equation can be written as 
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Using the continuous condition of displacement on the 

elastoplastic interface, the displacement in the plastic 

softening zone is obtained as 
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Similarly, in the plastic residual region, the relation between 

radial and tangential strain can be expressed as 2 0s rsθη ε ε+ =                    (22) 
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where η2 is the dilatancy gradient of surrounding rock in the 

plastic residual region. Similarly, the displacement in the 

plastic residual zone is obtained by using the plastic softening 

zone and the plastic residual zone to distinguish the 

continuous displacement conditions on the interface 

1 2
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p s
s
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R r
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          (23) 

where Rs is the radius of the plastic residual zone. 

 

4.2. Solution of Stress Field in Plastic Zone 

Rock mechanics experiments and engineering practice show 

that the strain softening effect of rock mass is mainly caused by 

the reduction of cohesion of rock mass, and the internal friction 

angle changes little before and after yield, so the softening of 

the internal friction angle can be ignored. At this point, the 

softening modulus of rock mass strength is expressed as 

c cs s
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σ σ
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where csσ  is the residual compressive strength of the rock mass, 

sC  is the residual cohesion of the rock mass, psθε  is the critical 

tangential strain of the rock mass from the plastic softening stage 

to the plastic residual stage, and epθε  is the rock entering the 

plastic softening stage from the elastic stage Critical tangential 

strain. When the rock mass is an ideal elastoplastic medium, Q=0, 

and when the rock mass is an ideal brittle plastic medium, Q→∞, 

that is, as the brittleness of the rock mass increases, the softening 

modulus will gradually increase. 

According to the trilinear stress-strain softening curve, the 

compressive strength of rock mass in the plastic softening 

stage is 
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The yield conditions of Mohr-Coulumb in the plastic 

softening zone can be expressed as 

p rp cpKθσ σ σ= +                  (26) 

Substituting it into the balanced differential equation, using 

the stress continuity condition on the elastoplastic interface

| |re r Rp rp r Rpσ σ= == , the radial and tangential stresses in the 

plastic softening zone are obtained as 
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In the plastic residual zone, the Mohr-Coulumb yield 

condition can be expressed as, 

s rs csKθσ σ σ= +              (29) 

Bringing it into the balanced differential equation, using the 

boundary condition 
0

|rs r r iPσ = = , when the cave wall is under 

uniform support pressure, and the radial and tangential 

stresses in the plastic residual zone are obtained as 
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4.3. Calculation of Plastic Zone 

According to the definition of softening modulus of rock 

mass strength, 

c cs
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Q
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where psθε  and epθε  can be calculated by (17) and (20), 
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Combine the above 3 equations to get: 
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At the same time, using the plastic softening zone and 

plastic residual to distinguish the stress continuity condition 

on the interface can be obtained: 

1

1
0 5( 1)

( 1)

K

s i cs

r K V

R K P σ
− −

=  − + 
         (36) 

with 
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In combination with equation (35) and Equation (36), the 

boundary formula of plastic residual zone and plastic 

softening zone can be expressed as, 

1

11

11
5

0

( 1)
1

( 1)

K
c cs

p
i cs

K V
R r

GQ K P

ησ σ
σ

−+   − −
= +   − +   

 (39) 

1

1
5

0

( 1)

( 1)

K

s
i cs

K V
R r

K P σ
− −

=  − + 
         (40) 

When 0r r= , the radial displacement on the cave wall can 

be obtained as, 
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In fact, when deviates from 1, the strain in the plastic zone 

is only approximately axisymmetric on the side with larger 

ground stress (λP), so the displacement calculated by the 

above formula is closest to the true value only if θ is at 90° and 

270°, and the error is relatively large on the side where the 

ground stress is smaller (λP). The finite element calculation 

results of a large number of circular cavities show that when 

the plastic zone is large (Rpmin>1.5r0), the ratio of the radial 

displacement of any point on the cavity wall to its minimum 

value is approximately calculated as follows, 
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At this time, the approximate solution of the radial 

displacement of the circular cavity can be obtained as follows, 
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The calculation analysis shows that when λ=1, the above 

formula is the solution of literature [16], that is, the analytical 

solution considering strain softening and dilatancy under 

axisymmetric loads is a special case of this approximate 

solution. In the calculation process, the stress state of 

surrounding rock should be determined. If the surrounding 

rock has not entered the plastic residual stage, the value of α 

will be 1. If the surrounding rock has entered the plastic 

softening stage, the displacement will be calculated using 

Equation (14). 

5. Calculation Examples and Analysis 

For a circular tunnel with a radius of r0=2.965m, ignoring 

the disturbance of the surrounding rock during the excavation 

process, the physical as well as mechanical parameters of the 

surrounding rock are: elastic modulus E=20 GPa, Poisson 

ratio µ=0.3, and the friction angle in the rock body φ=30 °, 

cohesion C＝Cs=0.3MPa, softening modulus Q=0, expansion 

gradient η1=η2=1, lower ground stress level is 10 MPa, lateral 

pressure coefficient λ is 1, 1.5, 2. The stress field, plastic zone 

radius and radial displacement of the surrounding rock of the 

tunnel under different lateral pressure coefficients were 

calculated, and compared with the existing analytical 

solutions and finite element solution (Phase2D). 

Table 1. Calculation and comparison of the ratio of displacement and tunnel 

radius u0/r0. 

λ 
Finite element solutions Solutions in this paper 

θ=0° θ=90° θ=0° θ=90° 

1 0.13% 0.13% 0.13% 0.13% 

1.5 0.29% 0.24% 0.34% 0.28% 

2 0.47% 0.34% 0.44% 0.31% 

The calculation results show that the stress fields in the 

elastic zone and the plastic zone of the surrounding rock 

obtained in this paper are very close to the finite element 

calculation results in terms of distribution form and value. 

From Table 1 and Table 2, it can be seen that compared with 

the analytical solutions of Cai and Sun, the Rp/r0 calculated by 

the approximate solution given in this paper is closer to the 

finite element calculation result and slightly larger than the 

finite element solution. When the lateral pressure coefficient 

λ=1~2 and the plastic zone is relatively large, the approximate 

solution of cave wall displacement obtained in this paper is 
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also very close to the finite element solution. 

Table 2. Calculation and comparison of the ratio of plastic zone radius and tunnel radius Rp/r0. 

λ 
Solutions of Cai Solutions of Sun Finite element solutions Solutions in this paper 

θ=0° θ=90° θ=0° θ=90° θ=0° θ=90° θ=0° θ=90° 

1 3.18 3.18 3.18 3.18 3.04 3.04 3.18 3.18 

1.5 4.16 2.78 4.22 2.85 3.37 2.36 3.54 2.78 

2 4.96 2.30 5.11 2.62 3.78 2.02 3.86 2.30 

 

From Table 3, we can know that the lateral pressure 

coefficient has a great influence on the displacement value of 

the cave wall, and with the increase of the softening modulus 

and expansion gradient of the surrounding rock, the 

displacement of the cave wall will increase significantly, 

showing the strain softening and expansion of the surrounding 

rock has a great influence on the displacement field of the 

surrounding rock. Thus, it is necessary to consider the 

softening and dilatancy effect of the surrounding rock when 

analyzing the elastic-plastic analysis of the surrounding rock, 

especially when analyzing the deformation and plasticity area 

of the surrounding rock in the extruded stratum, so as to get a 

safer conclusion. 

Table 3. Calculation of the ratio of displacement and tunnel radius u0/r0 with different soften parameter and dilatancy grads. 

λ 
Cs=0.3MPa, Q=0, η1=1, η2=1 Cs =0.1MPa, Q=1GPa, η1=1.5, η2=1.2 Cs =0.1MPa, Q=50GPa, η1=2, η2=1.5 

θ=0º θ=90º θ=0º θ=90º θ=0º θ=90º 

1 0.13% 0.13% 1.36% 1.36% 2.25% 2.25% 

1.5 0.34% 0.28% 3.09% 2.52% 4.89% 3.99% 

2 0.44% 0.31% 3.63% 2.57% 5.39% 3.81% 

 

6. Conclusion 

The ground stress lateral pressure coefficient of the 

surrounding rock of circular tunnel has a great influence on 

its plastic zone, stress field and displacement field, and the 

analytical method research of the elastic-plastic analysis of 

the surrounding rock of circular tunnel is mostly on the basis 

of the axially symmetric distribution of load, which affects 

its application in engineering practice. Considering the yield 

of the strain softening and expansion of rock mass effect, 

using three linear elastic - plastic softening - plastic residual 

stress and strain softening model and the Mohr-Coulomb 

yield criterion, the axisymmetric load was deduced under the 

circular tunnel surrounding rock elastic zone and the plastic 

softening zone and plastic zones in the surrounding of 

residual stress field, strain field, displacement field and 

plastic zone radius of the approximate analytical solution, 

suitable for plastic zone of surrounding rock is bigger 

(Rpmin>1.5r0) and the lateral pressure coefficient is 1≤λ<3. 

The approximate analytical method is close to the calculation 

result of finite element method and can replace the finite 

element method to carry out simple elastic-plastic analysis of 

surrounding rock. 
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